Tutorial of Steps for a PREDICTIVE ANALYSIS

Jinhee Kim

Predictive Analytics is an advanced analytics that makes predictions about future events. It uses many techniques including statistics, modeling, machine learning, artificial intelligence and more. By successfully identifying the relationships among many factors and interpreting data, business (or individual) is effectively able to assess risks and opportunities and be preemptive for the future.

Predictive analysis can be done much more efficiently when it takes step by step and iterative operations followed by CRISP-DM. Business understanding is the first phase. Some of the things you want to achieve at this stage include:

- Find the questions you want to answer
- Include stakeholders in the discussion from the very beginning
- Define analytical goals
- Make it clear about expectation of success
- Communicate how others should help for analytical projects
- Define the target variables to make sense to all stakeholders
- Create project plan with timeline and milestones

Business Understanding

In this tutorial, a health related topic has been chosen, and the goals have been narrowed down to

Discover analytical insights of healthy life and longevity:

- (1) discover key health indicators to improve longevity
- (2) predict life expectancy and healthier life

Secondly we need to understand the data. The below is what needs to be considered during this phase.

- Learn existing data sources, practical problems
- Write how we will extract and assemble the data
- Assess if data is suitable for the intended outcome
- Enhance the data with internal data and external data
- Run descriptive statistics for all variables (mean, medians, standard deviations, etc.)
- · Learn continuous and categorial variables
- Define target variables
- How to handle outliers
- Graph data distributions
- Convert data distribution to a form a normal curve (logistic regression)
- Calculate correlation coefficients
- How to handle missing data
- How to handle sample in larger data population, experimental bias, measurement bias, intentional bias
- Determine if data set samples should be performed prior to analysis (reduce data volume, use that into resampling or cross validation, undersampling or oversampling?)

Data Understanding

- Data set has been obtained at https://catalog.data.gov/dataset/community-health-status-indicators-chsi-to-combat-obesity-heart-disease-and-cancer
- The data set has been relatively in a good shape and is composed of 7 csv files with data explanation.
- Interesting information has been detected many areas including rick factors, access to care and demographic information.

Data Understanding – important data description

When possible, it would be very helpful to obtain data dictionary or description.

COLUMN_NAME	DATA_TYPE	IS_PERCENT_DA TA	DESCRIPTION			
ALE	Decimal	N	County data, average life expectancy			
Health_Status	Decimal	Y	County data, self-rated health status			
Unhealthy_Days	Decimal	N	County data, average number of unhealthy days in past month			
No_Exercise	Decimal	Y	County data, no exercise			
Few_Fruit_Veg	Decimal	Y	County data, few fruits/vegetables			
Obesity	Decimal	Y	County data, obesity			
High_Blood_Pres	Decimal	Y	County data, high blood pressure			
Smoker	Decimal	Y	County data, smoker			
Diabetes	Decimal	Y	County data, diabetes			
Uninsured	Integer	N	County data, uninsured individuals			
Elderly_Medicare	Integer	N	County data, medicare beneficiaries, elderly (age 65+)			
Disabled_Medicare	Integer	N	County data, medicare beneficiaries, disabled			
Prim_Care_Phys_Rate	Decimal	N	County data, primary care physicians per 100,000 pop.			
Dentist_Rate	Decimal	N	County data, dentists per 100,000 pop.			

In order get good ideas about data, exploratory graphs and basic statistical information can be used. KNIME is an open source data mining program. Among KNIME nodes, Interactive table, bar chart, statistics are useful during the exploratory phase.

First the file has to be read, and then connect to interactive table, statistics and bar chart.

To move to the next step, key attributes should be identified. Basic statistics should be computed to find meaningful information. Exploratory graphics can be used to gain further insights to formulate hypotheses.

Data Understanding

Data Understanding – interactive table

File Hilite	Navigation	View	Output										
Row ID	State	Count	S CHSI	S CHSI	S CHSI	Strata	D No_Ex	D Cl_Min	D CI_Ma	D Few_F	D Cl_Min	D CI_Ma	£
Row0	1	1	Autauga	Alabama	AL	29	27.8	20.7	34.9	78.6	69.4	87.8	24
Row1	1	3	Baldwin	Alabama	AL	16	27.2	23.2	31.2	76.2	71.2	81.3	23
Row2	1	5	Barbour	Alabama	AL	51	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	2
Row3	1	7	Bibb	Alabama	AL	42	-1,111.1	-1,111.1	-1,111.1	86.6	77.8	95.4	-]
Row4	1	9	Blount	Alabama	AL	28	33.5	26.3	40.6	74.6	66.1	83	24
Row5	1	11	Bullock	Alabama	AL	75	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1
Row6	1	13	Butler	Alabama	AL	76	24.5	15.5	33.5	-1,111.1	-1,111.1	-1,111.1	27
Row7	1	15	Calhoun	Alabama	AL	6	29.2	25.1	33.3	81.9	77.2	86.7	21
Row8	1	17	Chambers	Alabama	AL	50	34.7	25.3	44	84.6	75.4	93.7	-1
Row9	1	19	Cherokee	Alabama	AL	64	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-]
Row10	1	21	Chilton	Alabama	AL	32	30.3	23.1	37.5	82.8	75.2	90.4	3
Row11	1	23	Choctaw	Alabama	AL	66	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1
Row12	1	25	Clarke	Alabama	AL	51	31.5	22	41.1	-1,111.1	-1,111.1	-1,111.1	-]
Row13	1	27	Clay	Alabama	AL	63	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-]
Row14	1	29	Cleburne	Alabama	AL	41	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-]
Row15	1	31	Coffee	Alabama	AL	32	23.3	17.2	29.4	-1,111.1	-1,111.1	-1,111.1	2!
Row16	1	33	Colbert	Alabama	AL	21	30.2	23.3	37.2	76.9	66.8	86.9	3(
Row17	1	35	Conecuh	Alabama	AL	75	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1
Row18	1	37	Coosa	Alabama	AL	41	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1
Row19	1	39	Covington	Alabama	AL	35	28.8	21.1	36.6	-1,111.1	-1,111.1	-1,111.1	3(
Row20	1	41	Crenshaw	Alabama	AL	71	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1,111.1	-1
Row21	1	43	Cullman	Alabama	AL	21	29.4	23.9	34.9	76.2	69.4	83	27

Interactive table shows that there are a lot of -1,111 which should be handled. It looks like this is an arbitrary number to fill up missing value or un-determined value.

Data Understanding - statistics

This basic statistics table shows how data has been distributed and many ideas of what to do to prepare the data including missing value, outliers, and many more to build models..

Data Understanding – histogram (life expectancy and poverty)

Data Understanding – histogram (life expectancy and health status)

Data Understanding – histogram (life expectancy and no exercise rate)

Feature Selection (1)

Feature selection is also known as variable, attribute, predictor selection. This is a selecting process to use them in predictive model construction. It is important to simplify the attributes in order to interpret the models easily, reduce processing time, enhance generalization, and reduce overfitting.

This analytical activities focus on ALE (Average life expectancy) as a main class attribute.

Insights: It shows that poverty, health status (self diagnosed), exercise and smoking are strong indicators to factor average life expectancy followed by diabetes, diabetes, obesity. It would be not unsafe that what people think about their health status is more likely their actual health status. It is interesting to know that poverty is #1 factor and "Black" race is also one of important factors.

Feature Selection (2)

In order to get F-value to see how importantly variables are related to the dependent variable, you click "Data Mining " tab, then "Feature Selection". After you specify the variables, you can click "summery" for F-value. When you click "histogram", you can get importance plot.

Home	Edit	View	Format	Statistics	Data Mining	Graphs	Tools	Data	🕌 Feature Se	lection *	
Quick Quick Quick Variables Dependent; contil Dependent; categories	nuous: ALE gorical: none			Cancel Cancel Options Comp Data						T F-value	p-value
Predictors; conti Predictors: cated	nuous: 6-11.1 porical: none	14-16 18 20-24						Poverty		92.95342	0.000000
Count Varial	ole: none							Health_Statu	IS	90.14998	0.000000
Number of suite for							2	No_Exercise		76.70593	0.000000
	<u>~</u>		Selec	t dependent variab	les and predictors			Black		59.02300	0.000000
Treat continuou	15 - Elderly	Medicare R 🔺	1 - row ID	15 - Elderty	Medicare R 🔺 1 - row IE)	ОК	Smoker		58.16560	0.000000
Number of cuts	16 - Prim_C 17 - ALE	are_Phys_F	4 - CHSI_Coun 5 - CHSI_State	ty_Name <u>16 - Prim_C</u> _Abbr <u>17 - ALE</u>	are_Phys_F 4 - CHSI 5 - CHSI	County_Name State_Abbr	Cancel	Diabetes		50.69831	0.000000
	18 - Health 19 - Popula	_Status tion_Size		18 - Health 19 - Populat	Status ion_Size		Calicei	Obesity		46.18917	0.000000
	20 - Poverty 21 - White	/		20 - Poverty 21 - White			[Bundles J	Uninsured R		42.71937	0.000000
	22 - Black 23 - Asian			22 - Black 23 - Asian			Use the "Show appropriate	High_Blood_	Pres	38.37362	0.000000
	24 - Hispan	ic 🗸		24 - Hispani	c 🗸		variables only" option to	White		32.94523	0.000000
	<	>		<	>		pre-screen variable lists and	Asian		18.06126	0.000000
	Spread	Zoom	Spread	Zoom Spread	Zoom Spread	Zoom	show categorical and continuous	Few_Fruit_V	eg	11.56978	0.000000
	Dependent;	continuous:	Dependent; cat	egorical: Predictors; c	ontinuous: Predictors	; categorical:	variables. Press F1 for more	Hispanic	-	7.21772	0.000000
	17			6-11 14-16	18 20-24		information.	Elderly Medi	care R	6.06386	0.000000
	Show ap	propriate variab	les only					Prim_Care_F	hys_Rate	3.96806	0.000005

Strong Predicters

The Scatterplots between average life expectancy and poverty and No-exercise show negative linear relationship.

Correlations

Interesting findings between factors

- Almost perfect linear relationship between diabetes and high blood pressure
- Smoking related very strongly all to diabetes, high blood pressure, obesity, and even exercise. There is something unexpected discovery that smokers less likely spend time to exercise.
- All heath risk factors are showing positive linear relationship each other.

Data Preparation

During this phase, some of the following should be determined and managed.

- Sampling
 - Random sampling
 - Stratified sampling (more than 2 groups)
 - Oversampling and undersampling
 - Assign case weights or prior probabilities to specific target classes
- Cleaning
- Reduce variables to reduce complexity for models to work efficiently, and reduce noise
- Reduce numbers (neural network accepts categorial value only to numbers, it's better for decision tree as well)
- Clustering reduce data volume
- Derive "dummy" variables from categorial variables
- Develop hierarchy generation
- Standardization for statistical algorithms
- Recoding
- Filtering
- Missing value imputation
- Derived variables
- Summarize, calculate, make dummy variables
- Handle outliers
- Handle temporal data

For this predictive analysis, in order to construct the final dataset,

- Less valuable variables have been deleted
- 3 csv files have been consolidated and the data has been simplified from county level to state level for easy manipulation
- Missing data case has been handled
- Some data has been calculated (sum, average, etc.)

STATISTICA Data Miner Recipes (DMR)

This is a systematic process to build analytic models that relate dependent variables to independent variables. Usually when dependent variables are continuous, it is likely involved with regression models. When they are categorical, it creates classification models. DM Recipe is a step-by-step process starting with data analysis and ends with model evaluation. It includes various predictive models including neural networks, support vector machines, trees, and more.

HOW TO START

1. Click "File" tab, "Open" source file. Before we start, we need to have "prepared" (i.e., cleaning, transformation) data ready in order to avoid any problems.

2. Click "Data Miner Recipes" from "Data Mining" tab. Then data mining dialogue will be opened.

3. Once you select New or Open file, it starts from Data preparation. If you are here, it is very self-explanatory from here and basically you can just follow the following "Next step". First you can connect the data file. Just as you have done at Feature selection, variables should be specified.

You have an option to choose "sample data" and specify how you want to do sampling in "Advanced" tab.

Data preparation	Advanced	Annotations								
✓ Use sample of	lata									
Systematic random sampling kg More options										
O Stratified random sampling										
◯ Simple rand	◯ Simple random sampling									
Remove dupl records (case	icate es)	Duplicate records(cases)								
🗌 Valid data rar	ige	Valid data range								
Remove outli	er	Outlier								
Missing data		Missing data definition								

4. At Data for analysis, you get to see the basic statistic data and choose the training sample size.

🔲 Save recipe 💌 🔚 Report 💌			5	Undo 🖓	Redo 🗙	Clear step	Next step
Data preparation Data for analysis Data redundancy Target variable	D	ata Isl Nasi	for analysis Ann Select testing s c statistics table cases	otations selections selections	cted		
				Туре	Role	Mean	Standard deviation
		►	No_Exercise	Continuous	Input	25.75	6.42
			Few_Fruit_Ve	Continuous	Input	77.83	4.77
			Obesity	Continuous	Input	23.91	4.35
			High_Blood_f	Continuous	Input	26.68	5.31

You are able to review statistical data such as mean, standard deviation, skewness etc. Also, you should specify the test sampling. This is not selected in default. But testing sample would be highly recommended to test the accuracy of trained models.

- Specify testing sa	ample using	
🔘 Variable	Variable name none Code for training sample Code	for testing sample
	✓	×
● % of cases	Specify % 60	
◯ none		
		OK Cancel

5. Data redundancy

Often, we may feel like the more the predictor variables we have, the better or more accurate predictable models we can build. Because all those variables would help to build models with better accuracy and less error. However, often when the dimensionality increases, the huge number of combinations of values grow exponentially. It becomes harder to support to the outcome of the models. Actually, simple variables can help to gain more than to lose some information from less variables as a result.

🔲 Save recipe 💌 📰 Report 💌	🖍 Undo 🖂
Data preparation Data for analysis Data redundancy Target variable Coronary Heat Disease Model building Evaluation Deployment	Data redundancy Annotations Method Correlation coefficient Spearman Rank Correlation R None Criterice unlyn
	Criterion value 0.70

In this case, "curse of dimensionality" has been considered during data preparation stage. We did not do anything.

6. Important variables

STATISTICA DMR uses tree-based algorithms for finding important input predictor variables and interactions among them even after we have handled "data redundancy" previously to make sure simple interactions between variables.

Recipes Steps Options	
🛄 Save recipe 💌 🔚 Report 💌	🗂 Undo 🔽 Redo 🗶 Clear step .
Data preparation Data for analysis Data redundancy Target variable ALE Model building Evaluation Peployment	Important variables Annotations Important variables selection using Important variables selection using

Fast predictor screening has been chosen to make sure that the data has been optimized for models at best.

7. Model building.

Data redundancy	Select method	Build model
Target variable	C&RT 🗹 😹 Neural network	On server
Important variables	🔲 🎆 Random forest 🗹 📴 SVM	D ₁ Get results
Model building Evaluation	✓ As Boosted tree	Load PMML
X Deployment	List of models	

By default, the program automatically searches some predictive models, and is ready to "automate" the process them. Large-size data can take a while to build models.

It is also very useful to check a number of graphical displays to review how each model perform to predict the target of interest.

Once the models have finished building, we can get a table to show accuracy of each model.

List of m	odels						
Model ID	Name	Training residual (mean sum of square)	Testing residual (mean sum of square)	Correlation Coefficient (Training)	Correlation Coefficient (Testing)	Select for evaluation	
4	Neural	0.93	1.04	0.87	0.87	TRUE	
2	Boosted	0.46	1.62	0.94	0.79	TRUE	
1	C&RT	0.62	1.68	0.91	0.79	TRUE	
3	SVM	1.85	2.26	0.80	0.76	TRUE	

8. Model evaluation.

The models have been built. This is the process to test "trained models" with data sets that were not used before. The ability to predict new data is a very important part of predictive analysis. If the models do not perform, we will need to go back and investigate the data set and settings of models and try to re-build or change the existing models to meet the needs and goals.

The scatterplots show that SVM model performs different from 3 other models. The other 3 models show very similar linear relationship.

		Correlations (Prediction) Marked correlations are significant at p < .05000 N=882 (Casewise deletion of missing data)								
Variable		ALE								
2-Boosted tre Prediction	ees	0.787927	7							
3-SVM Prediction		0.755165	5							
1-C&RT Prediction		0.787848	3							
4-Neural netw Prediction	ork	0.870155	5							
	Summary	of Deploym	ent (Error rates	s) (4chsi_Valida	ation)					
	2-Boost	ed trees	3-SVM	1-C&RT	4-Neural					
Error rate		1.620973	2.264428	1.677089	1.041139					

Neural network shows the strongest correlations and smallest error rate.

After you click "Evaluate models" button, the result will tell in many ways about the models. You can also review "Summery of Deployment" to check the difference between observed data and predicted data for each model in case you need to check the data in a granular level.

	-0								
📴 Results* 🔹 <		Summary of I	Deployment (4chsi_Validati	on)					
🖶 🛅 Data preparation		FileNames: 2	-Boosted trees.xml						
👜 📄 Data for analysis		ALE	2-Boosted trees	2-Boosted trees	3-SVM	3-SVM	1-C&RT	1-C&RT	4-Neural network
— Data redundancy	1	66.60000	77.09288	-10.4929	75.91787	-9.31787	70.86250	-4.26250	73.87586
🚊 🗁 Target variable	2	66.60000	75.84605	-9.2461	76.00099	-9.40099	70.86250	-4.26250	72.16442
🖨 🦢 ALE	3	66.60000	73.78266	-7.1827	75.99594	-9.39594	70.86250	-4.26250	72.07676
inportant variables	7	70.40000	75.49769	-5.0977	75.56955	-5.16955	72.71250	-2.31250	72.67382
Model building	8	70.80000	73.10416	-2.3042	72.83276	-2.03276	72.71250	-1.91250	73.13271
Evaluation	11	71.10000	71.99995	-0.9000	73.41580	-2.31580	70.86250	0.23750	73.82352
Scatterplot(Testing sample)-5/5/	12	71.20000	74.03434	-2.8343	75.05859	-3.85859	72.71250	-1.51250	73.61723
Correlation matrix-5/5/2018 12:04	13	71.40000	70.36913	1.0309	74.29629	-2.89629	70.86250	0.53750	72.30662
Summany of Deployment (Achri)	15	71.50000	72.42206	-0.9221	75.52930	-4.02930	70.86250	0.63750	72.35822
Summary of Deployment (From r	17	71.60000	73.36167	-1.7617	75.32223	-3.72223	72.71250	-1.11250	73.11998
Deployment (End in	19	71.60000	72.80546	-1.2055	75.66081	-4.06081	72.71250	-1.11250	72.75381
Deployment	21	71.90000	74.33186	-2.4319	74.56030	-2.66030	74.36000	-2.46000	73.02053
E- g Summary report	23	72.00000	72.50056	-0.5006	75.19559	-3.19559	72.71250	-0.71250	73.25651
Data preparation report-5/4/2018 11:43:0	24	72.00000	73.47555	-1.4756	75.52367	-3.52367	72.71250	-0.71250	73.76520
Data cleaning report-5/4/2018 11:53:43 P	25	72.10000	73.54813	-1.4481	75.11915	-3.01915	73.53000	-1.43000	73.29989
Data reduction report-5/4/2018 11:54:18	26	72.10000	73.97344	-1.8734	75.69317	-3.59317	72.71250	-0.61250	73.94352
Feature selection report-ALE-5/4/2018 11	27	72.20000	74.25582	-2.0558	75.57028	-3.37028	76.33846	-4.13846	74.33571
	29	72.20000	74.31789	-2.1179	75.28311	-3.08311	76.55000	-4.35000	73.07962
Evaluation report-ALE-5/5/2018 12:20:43	30	72.20000	73.23030	-1.0303	74.46606	-2.26606	73.53000	-1.33000	73.38570
	24	70 00000	70 55500	4.0550	75 40440	0.00440	70 74050	0.44050	70 04470

Overall, it is likely that Neural Network model will predict more accurately compared to other 3 models, boosted tree, SVM and C&RT. Among the 4 models, STATISTICA shows that Neural Network has the most significance as it has the least residual and the strongest correlation coefficient. Residual error is the difference between observed value and the estimated value. The smaller the number is the better the prediction is. Correlation coefficient is statistical relationship between variables. Usually it lays from 1 to -1. The closer to 1 or -1 is, the stronger relationship is.

7. Deployment.

Now it is the stage to actually use the model to predict with real world cases. The data will be brand new which have not been used both for training and testing. Successful predictive models should be able to predict new data with the accuracy that stakeholders can accept. Unfortunately, only STATISCA enterprise version is able to experience actual deployment.

Additionally you may also like to download PMML xml code for single data mining algorithm. Click "Code generator", select PMML and save XML file somewhere.

Data preparation	Deployment Annotations
Data ror analysis Data redundancy Target variable	Deploy using data file selection
ALE	Write back to deployed file
Wodel building	Variables to write back none
······ g Deployment	Code generator
	Deploy to Statistica Enterprise

Neural Networks

From DM recipe, we learned that neural network model is the best among 4 models. This algorithm will be run again individually with more control and optimization in order to see if this can be performed even better.

1. Click "Data Mining" tab, and click "Neural Networks"

2. You have option to deploy from the previous analysis, or you can select new analysis.

eployment Deploy models	from previou	is analyses			New analysis O New analysis	Can
¥		Load network	files		Regression	Dopti
File name	Net. ID	Net. name	Hidden act.	Output act.	Classification	(C2) 0
omml-chsi.xml	1	MLP 15-7-1	Logistic	Tanh	Time series (classification)	
					Cluster analysis	
					Select an analysis type from the list above to start a new analysis.	
UNN III		PMML file li	st		To deploy models from previous analyses, use the deployment	

New analysis/Deploy	yment					
Deployment O Deploy mode	els from previou	s analyses Load network	files		New analysis New analysis 	Cancel
File name	Net. ID	Net. name	Hidden act.	Output act.	Classification Classification Classification Classification Cluster analysis Select an analysis type from the	Den Data
		PMML file I	ist		ist above to start a new analysis. To deploy models from previous analyses, use the deployment option.	

New analysis with "Regression" option has been started.

 As you click the "ok", you will see a dialogue box like the below. Just like other times, variables need to be specified. Quick Sampling (CNN and ANS) Subsampling -----<u>0</u>K Ŀ <u>V</u>ariables Cancel Analysis variables (present in the dataset) $\mathbf{\lambda}$ Options Continuous targets: ALE Categorical target: none Set the test and/or validation sample fields to 0 to exclude these Continuous inputs: 6-11 14-16 21 23-27 Categorical inputs: none samples from the analysis. Strategy for creating predictive models Automated network search (ANS) O Custom neural networks (CNN) MD handling (inputs) O Subsampling (random, bootstrap) Casewise Mean substitution CRSES Case selection Case weights

You have an option to choose sample differently for subsequent analysis.

Random sampling		Cancel
Random sample sizes:		
Train (%):	0 🖆	Sampling variable: 4chsi 🛛 ? 📉 🚽
Test (%):	100 🖃	Sample Identifier Variable none OK
Validation (%):	0 🖆	
Seed for sampling: Subset variable Sampling variable:	none	Status Select a sample identifier variable and a code for that variable which uniquely identifies the cases to be used in the analysis. Any remaining valid cases (which have positive case weights and meet any selection conditions) can be treated as a test sample. For all valid cases, predicted values and residual statistics can be computed, saved, and used in subsequent analyses.
Validation sample	e none	Mean substruction State: Case selection Case weights

At this time, random sampling has been selected as below.

Sampling method			<u>0</u> K
-Random sampling			Cancel
Random sam	ple sizes:		Ontions
Train (%):	60 🚔	<u> </u>	options
Test (%): Validation (%	20 🚔): 20 🚔	Set t valid to 0	he test and/or lation sample fields to exclude these ales from the
Seed for sam Subset variable	pling: 1000	anal	ysis.
Seed for sam Subset variable O Sampling vari	pling: 1000	anat	ysis.
Seed for sam	pling: 1000	anat	handling (inputs) Casewise
Seed for sam	pling: 1000	anal MD ©	ysis. Handling (inputs) Casewise Mean substitution
Seed for sam	pling: 1000	MD Stiller crasss	handling (inputs) Casewise Mean substitution

 Now the setup has been done and we can start training. Click "Train" button.

Net. ID	Net. name	Training p	erf. Te	est perf.	Valida	tion perf.	Algo	ithm	Error funct.	
<										>
ick ML Network	P activation fund	tions Wei <u>c</u>	ht deca	y Initializa n/Retain na	ation etworks	3			<u>T</u> rain	
MLP Min. hid	: den units: 5		Net	works to tra works to re	ain: tain:	20 5			G <u>o</u> to resu Save networ	lts <u>k</u> s
Max. hid	den units: 16		Error	r function				EUNH	Data statįs Summar	tic
Min. hi	dden units: 21	É	•	Cross entro	py				Cancel	_

It's running

The result is like below. ANN will train and retain 5 networks. When training is complete, the ANN Results dialog box will be displayed.

								Objects	Color Direct
Vet. ID	Net. name	Iraining perf.	lest perf. \	/alidation perf.	Algorithm	Error funct.	. •	Obesity	Hign_Bloc
							_	22.1	
							_	36.4	
			Neural n	etwork train	ning in pro	ogress		×	
4	Put	lding notw	oek 17 (M	D 45-46-4	logict	ic tan			
	BUL	turny netw	ОГК 17 (НL	F 15-14-1	, iogist	.ic, tam	"		
ok ML	Pactiv Cyc	Le=50:							
Network	types Tra:	ining erro	r=0.359037	, Test er	ror=0.51	0827			
MLP									
Min. hid	den ur								
Max, hid	lden u d	ancel training & iscard existing		Finish training	current art next		Finish tr	raining & move results dialog	
		Cancel	1	Next				Finish	
							_		
Min. hid	iden u nito. Z r	=	Crean antron			0 1		29.3	-
Max. hi	dden units: 30	-	cross entrop	у		Cancel		32.3	
					>	Options	•	210	
tive n	oural natw	udce.							
aive ii	curarnetwo	JIKS							
Net. I	D Net. n	ame	Training per	f. Test pe	erf. Va	lidation p	erf.	Algorithm	Error
1	MLP 1	5-7-1	0.897141	0.9002	07 0.	908326		BFGS 48	SOS

Net. ID	Net. name	Training perf.	Test perf.	Validation perf.	Algorithm	n Error funct	^
1	MLP 15-7-1	0.897141	0.900207	0.908326	BFGS 4	8 SOS	
2	MLP 15-8-1	0.875099	0.889922	0.907257	BFGS 1	5 SOS	
3	MLP 15-14-1	0.873900	0.892892	0.905777	BFGS 1	6 SOS	
A	MLP 15.5.1	0.87/35/	0.991721	0.906168	REGS 1	202 3	~
<						>	
器	Select\Deselect	t active network	cs 🚦		<u>)</u> elete netv	vorks	
edictions	Graphs Detai	Is Custom pred	dictions				Pint
Prodictio						Sound C.	
riedictio	ns spreadsheet -					mme Summe	ary
Predictio	ns spreadsheet	In	clude			Save netw	ary or <u>k</u> a
Prediction	ns spreadsheet - ctions type andalones	In	clude Inputs	Absolute res.		Save netw	ary or <u>k</u> s
Prediction Prediction St Fr	ns spreadsheet - ctions type andalones asemble		clude Inputs	Absolute res.		Save netw Cancel	ary or <u>k</u> e
Prediction Prediction St St St	ns spreadsheet ctions type andalones nsemble andalones and ei	nsemble	clude Inputs Targets Output	Absolute res.		Cancel	ary or <u>k</u> s
Prediction Prediction St St St	ns spreadsheet tions type andalones nsemble andalones and ei	nsemble	clude] Inputs] Targets] Output] Residuals	Absolute res. Square res. Standard res		Save netw Cancel Cancel Samples	or <u>k</u> e
Prediction Prediction St St St	ns spreadsheet ctions type andalones isemble andalones and er Prediction:	nsemble	clude Inputs Targets Output Residuals	Absolute res. Square res. Standard res Variables intervals		Save netw Cancel Cancel Cancel Samples Train	or <u>k</u> s
Predicto Predicto St St St	ns spreadsheet ctions type andalones nsemble andalones and en Prediction:	nsemble s	clude Inputs Targets Output Residuals Confidence	Absolute res. Square res. Standard res Variables intervals		Cancel Cancel Samples Train Test	orks
Prediction Prediction Prediction St St St	ns spreadsheet ctions type andalones nsemble andalones and er P <u>r</u> ediction:	nsemble	clude Inputs Targets Output Residuals Confidence	Absolute res. Square res. Standard res Variables intervals		Cancel Ca	orks

5. Check the results

Summary	of active networ	ks (4chsi)							
Index	Net. name	Training perf.	Test perf.	Validation perf.	Training error	Test error	Validation error	Training algorithm	Error function
1	MLP 15-7-1	0.897141	0.900207	0.908326	0.371792	0.416754	0.382915	BFGS 48	SOS
2	MLP 15-8-1	0.875099	0.889922	0.907257	0.446760	0.449590	0.388438	BFGS 15	SOS
3	MLP 15-14-1	0.873900	0.892892	0.905777	0.450461	0.444697	0.398477	BFGS 16	SOS
4	MLP 15-5-1	0.874354	0.891721	0.906168	0.449220	0.444231	0.392224	BFGS 16	SOS
5	MLP 15-10-1	0.893080	0.896645	0.912867	0.385652	0.431039	0.371473	BFGS 43	SOS

	Predictions statis	stics (4chsi)			
	Target: ALE				
Statistics	1.MLP 15-7-1	2.MLP 15-8-1	3.MLP 15-14-1	4.MLP 15-5-1	5.MLP 15-10-1
Minimum prediction (Train)	66.89156	71.0671	70.8289	71.2535	66.6550
Maximum prediction (Train)	80.91928	80.7167	80.4183	80.4440	80.7441
Minimum prediction (Test)	71.42406	72.2005	72.1860	72.0951	71.1161
Maximum prediction (Test)	80.98818	81.1413	80.6312	80.8834	81.1974
Minimum prediction (Validation)	71.15719	71.7439	71.8423	71.9848	70.5609
Maximum prediction (Validation)	80.95542	80.9070	80.5511	80.6711	80.5098
Minimum prediction (Missing)					
Maximum prediction (Missing)					
Minimum residual (Train)	-3.37751	-4.4817	-4.2521	-5.0214	-3.3432
Maximum residual (Train)	2.85772	3.8457	3.8409	3.6414	2.6715
Minimum residual (Test)	-5.53569	-7.2552	-7.2853	-7.3585	-7.3152
Maximum residual (Test)	2.79133	2.8776	2.7121	2.8340	2.5044
Minimum residual (Validation)	-3.88968	-3.5671	-3.5935	-3.6985	-3.2611
Maximum residual (Validation)	2.78152	2.7225	3.1469	3.0620	2.7648
Minimum standard residual (Train)	-5.53919	-6.7051	-6.3353	-7.4920	-5.3836
Maximum standard residual (Train)	4.68672	5.7536	5.7228	5.4330	4.3019
Minimum standard residual (Test)	-8.57495	-10.8204	-10.9248	-11.0403	-11.1422
Maximum standard residual (Test)	4.32386	4.2916	4.0670	4.2520	3.8146
Minimum standard residual (Validation)	-6.28583	-5.7234	-5.6927	-5.9055	-5.3505
Maximum standard residual (Validation)	4.49501	4.3683	4.9852	4.8892	4.5363

	Correlation coefficients (4chsi)						
	ALE	ALE	ALE				
	Train	Test	Validation				
1.MLP 15-7-1	0.897141	0.900207	0.908326				
2.MLP 15-8-1	0.875099	0.889922	0.907257				
3.MLP 15-14-1	0.873900	0.892892	0.905777				
4.MLP 15-5-1	0.874354	0.891721	0.906168				
5.MLP 15-10-1	0.893080	0.896645	0.912867				

15-7-1 has better predicting performance compared to other networks. All 5 models are in the similar range. 15-10-1 has yield higher correlation in test and validation data set. Earlier in DM recipe, NN had correlation of 0.87 whereas ANN made it up to 91%. Adding hidden units and iterative training, the significance has been improved. You have an option to choose certain network to build and deploy the model.

Support Vector Machine

We wanted to give it a try if support vector machine can be improved by building it individually, and possibly even better than ANNs have performed above.

1.	Click "Data Mining" tab, and click "Machine Learning"	Data Mining Graph Meural Networks Machine Learning GAM	
2.	Click Support Vector Machine	Quick Image: OK Support Vector Machines Cancel Mainer Naive Bayes Classifiers Image: Options Image: K-Nearest Neighbors Image: Options Support Vector Machines for classification and regression tasks Image: Options States Image: Options Image: Support Vector Machines for classification and regression tasks Image: Options Image: Support Vector Machines for classification and regression tasks Image: Options	
3.	As you click the "ok", you will see a dialogue box like the below. Just like other times, variables need to be specified.	Quick Sampling SVM Kemels Cross-validation Training Image: Market Stress Variables Selected variables Continuous dependent: ALE Categorical dependent: none Continuous independents: 6-11 14-16 21 23-27 Categorical independents: none	OK Cancel Detions ▼ Seller Seller Cassis Seller
4.	Specify Sampling	Quick Sampling Sampling Divide data into train and test samples: Image: Size of training sample (%): 60 Use sample variable: Sample Image: Sample off	Cancel Cancel ► Options ▼ Stitest s Cases s ► W

5. V-fold cross validation

Quick Sampling SVM Kemels Cross-validation Training	
V-fold cross-validation	<u>ек</u>
Apply v-fold cross-validation:	Cancel
V value: 10 Seed: 1000	▶ Options ▼
Grid search	
Minimum Maximum Increment	
Capacity: 1 🗘 10 🗘 1	CASES S
Epsilon: .1 📮 .5 📮 .1	MD deletion

Now, display the "Cross-validation" tab and select the "Apply v-fold cross-validation" check box. Click OK to initiate SVM training (model fitting), which is carried out in two stages. In the first stage, a search is made for an estimate of the capacity constant that achieves the highest classification accuracy. In the second phase of training, the estimated value of capacity is used to train an SVM model using the entire training sample. When training is finished, the Support Vector Machine Results dialog is displayed.

6. Results

Dataset 4chsi:	^				
<pre>Dependent: ALE Independents: No_Exercise, Few_Fruit_Veg, Obesity, High_Blood_Pre Sample size = 860 (Train), 574 (Test), 1434 (Overall)</pre>					
Support Vector machine results: SVM type: Regression type 1 (capacity=1.000, epsilon=0.500) Kernel type: Radial Basis Function (gamma=0.067) Number of support vectors = 12 (5 bounded) Cross-validation error = 0.018					
<pre>Mean error squared = 1.910(Train), 1.773(Test),</pre>	1.856(Overall)				
S.D. ratio = 0.656(Train), 0.664(Test), 0.659(Ov Correlation coefficient = 0.866(Train). 0.856(T	erall) est). 0.86; 🐴 🛨 🗸				
Quick Plots Custom predictions					
Summary Model	<u>Summary</u>				
Descriptive statistics	Cancel				
Predictions	▶ Options ▼				
Include Independents Dependents Predictions					
Residuals Confidence	Sample				
Predictions Histograms E Save	 Train Test Overall 				

	Regression summary (Support Vector Machines), Test sample (4chsi)							
	SVM: Regression type 1 (C=1.000, epsilon=0.500), Kernel: Radial Basis Function (gamma=0.067)						ma=0.067)	
	Number of support vectors= 12 (5 bounded)							
Regression summary	ALE							
Observed mean	76.73606							
Predictions mean	76.37348							
Observed S.D.	1.93182							
Predictions S.D.	0.84965							
Mean squared error	1.77329							
Error mean	0.36258							
Error S.D.	1.28246							
Abs. error mean	1.07073							
S.D. ratio	0.66386							
Correlation	0.85573							

You can review the results of SVM at the result dialog. The summary box at the top show specification of model information including number of support vectors, types, parameters and more. The detail view can be seen at regression summery. The tab of Plots can make many graphs like histogram and scatterplots.

Mean error squared is 1.773 which is higher than Neural network model, correlation coefficient is 0.856 which is slightly less than NN model. After we deployed V-fold cross validation, the overall performance has been improved, but still NN model seems to be better.

Check out simple results from 2 other regression models below.

Boosted Tree Model		Risk estimates (4chsi) Response: ALE		
		Risk	Standard	
		Estimate	error	
	Train	0.763579	0.038092	
	Test	1.207956	0.170425	

K-Nearest Neighbor Model

	Regression s
	Nearest neigh
Regression summary	ALE
Observed mean	76.66361
Predictions mean	76.64289
Observed S.D.	2.01199
Predictions S.D.	1.66382
Sum of squared error	1.03587
Error mean	0.02072
Error S.D.	1.01898
Abs. error mean	0.75894
S.D. ratio	0.50645
Correlation	0.86302

Model Comparison

After building 4 models, we should compare them in order to find the most optimal model. Since the dependent variable is continuous and they all are regression models, 3 matrixes have been chosen to measure their significance: mean squared error, correlation coefficient, residual diagnostic graphs.

	Neural Network	SVM	Tree	K-Nearest
1. Mean Squared Error	0.67	1.77	0.76	1.03
2. Correlation Coefficient	0.91	0.85	0.79	0.86

3. Residual Diagnostics

K Nearest Neighbor

Summery

Overall, it has been concluded that neural network model would be chosen to predict life expectancy as the neural network model has the smallest error and the greatest correlation coefficient.

Next page includes some learnings from the class and experiment with classification model.

Experiment Classification Model

Just to experience the case of classification model, bins have been created as another target class of life expectancy during data preparation stage. And decision tree classification model has been made at KNIME.

Some of the validation have been checked after the model has been built.

Confusion Matrix:

Accuracy is over 97%. This seems "too" good. It would be worth checking if bin size is too big, the model has overfitting problem, the data itself has been already too generalized, sample size is too small, or just the model is incredibly good.

Cumulative Gain chart (Lift Chart): The blue straight line is the base. The red curved line is the actual.

The further the curved line is from the straight line, the better.

When there are more than 1 lift chart from various classification models, the model with bigger curve will be picked. And optimal point can be noticed from the curved line as well.

ALE 2 \ Pre	70	74	76	78	80	
70	61	0	0	0	0	
74	4	196	13	0	0	
76	0	0	318	0	0	
78	0	0	17	510	0	
80	0	0	0	0	218	
Correc	t classified:	1,303	Wrong classified: 34			
Accuracy: 97.457 %			Error: 2.543 %			
Cohen	's kappa (κ)	0.965				

